55 research outputs found

    Impedence Control for Variable Stiffness Mechanisms with Nonlinear Joint Coupling

    Get PDF
    The current discussion on physical human robot interaction and the related safety aspects, but also the interest of neuro-scientists to validate their hypotheses on human motor skills with bio-mimetic robots, led to a recent revival of tendondriven robots. In this paper, the modeling of tendon-driven elastic systems with nonlinear couplings is recapitulated. A control law is developed that takes the desired joint position and stiffness as input. Therefore, desired motor positions are determined that are commanded to an impedance controller. We give a physical interpretation of the controller. More importantly, a static decoupling of the joint motion and the stiffness variation is given. The combination of active (controller) and passive (mechanical) stiffness is investigated. The controller stiffness is designed according to the desired overall stiffness. A damping design of the impedance controller is included in these considerations. The controller performance is evaluated in simulation

    Optimal control of quasi-1D Bose gases in optical box potentials

    Full text link
    In this paper, we investigate the manipulation of quasi-1D Bose gases that are trapped in a highly elongated potential by optimal control methods. The effective meanfield dynamics of the gas can be described by a one-dimensional non-polynomial Schr\"odinger equation. We extend the indirect optimal control method for the Gross-Pitaevskii equation by Winckel and Borzi (2008) to obtain necessary optimality conditions for state and energy cost functionals. This approach is then applied to optimally compress a quasi-1D Bose gase in an (optical) box potential, i.e., to find a so-called short-cut to adiabaticity, by solving the optimality conditions numerically. The behavior of the proposed method is finally analyzed and compared to simple direct optimization strategies using reduced basis functions. Simulations results demonstrate the feasibility of the proposed approach.Comment: 6 pages, 5 figures, 2 tables, accepted for IFAC World Congress 202

    Sampling-Based Trajectory (re)planning for Differentially Flat Systems: Application to a 3D Gantry Crane

    Full text link
    In this paper, a sampling-based trajectory planning algorithm for a laboratory-scale 3D gantry crane in an environment with static obstacles and subject to bounds on the velocity and acceleration of the gantry crane system is presented. The focus is on developing a fast motion planning algorithm for differentially flat systems, where intermediate results can be stored and reused for further tasks, such as replanning. The proposed approach is based on the informed optimal rapidly exploring random tree algorithm (informed RRT*), which is utilized to build trajectory trees that are reused for replanning when the start and/or target states change. In contrast to state-of-the-art approaches, the proposed motion planning algorithm incorporates a linear quadratic minimum time (LQTM) local planner. Thus, dynamic properties such as time optimality and the smoothness of the trajectory are directly considered in the proposed algorithm. Moreover, by integrating the branch-and-bound method to perform the pruning process on the trajectory tree, the proposed algorithm can eliminate points in the tree that do not contribute to finding better solutions. This helps to curb memory consumption and reduce the computational complexity during motion (re)planning. Simulation results for a validated mathematical model of a 3D gantry crane show the feasibility of the proposed approach.Comment: Published at IFAC-PapersOnLine (13th IFAC Symposium on Robot Control

    Singularity Avoidance with Application to Online Trajectory Optimization for Serial Manipulators

    Full text link
    This work proposes a novel singularity avoidance approach for real-time trajectory optimization based on known singular configurations. The focus of this work lies on analyzing kinematically singular configurations for three robots with different kinematic structures, i.e., the Comau Racer 7-1.4, the KUKA LBR iiwa R820, and the Franka Emika Panda, and exploiting these configurations in form of tailored potential functions for singularity avoidance. Monte Carlo simulations of the proposed method and the commonly used manipulability maximization approach are performed for comparison. The numerical results show that the average computing time can be reduced and shorter trajectories in both time and path length are obtained with the proposed approachComment: 8 pages, 2 figures, Accepted for publication at IFAC World Congress 202

    Optimizing optical potentials with physics-inspired learning algorithms

    Full text link
    We present our new experimental and theoretical framework which combines a broadband superluminescent diode (SLED/SLD) with fast learning algorithms to provide speed and accuracy improvements for the optimization of 1D optical dipole potentials, here generated with a Digital Micromirror Device (DMD). To characterize the setup and potential speckle patterns arising from coherence, we compare the superluminescent diode to a single-mode laser by investigating interference properties. We employ Machine Learning (ML) tools to train a physics-inspired model acting as a digital twin of the optical system predicting the behavior of the optical apparatus including all its imperfections. Implementing an iterative algorithm based on Iterative Learning Control (ILC) we optimize optical potentials an order of magnitude faster than heuristic optimization methods. We compare iterative model-based offline optimization and experimental feedback-based online optimization. Our methods provide a new route to fast optimization of optical potentials which is relevant for the dynamical manipulation of ultracold gases.Comment: 10 pages, 5 figure
    corecore